Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and$$P_{1/3}$$multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number$$M_A \approx 1.5$$), supersonic (Sonic Mach number$$M_S \approx 4-5$$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio$$L/\delta \approx 100$$, Lundquist number$$S_L \approx 400$$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate =$$\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.more » « less
-
Abstract Spectroscopic measurements of dense plasmas at billions of atmospheres provide tests to our fundamental understanding of how matter behaves at extreme conditions. Developing reliable atomic physics models at these conditions, benchmarked by experimental data, is crucial to an improved understanding of radiation transport in both stars and inertial fusion targets. However, detailed spectroscopic measurements at these conditions are rare, and traditional collisional-radiative equilibrium models, based on isolated-atom calculations and ad hoc continuum lowering models, have proved questionable at and beyond solid density. Here we report time-integrated and time-resolved x-ray spectroscopy measurements at several billion atmospheres using laser-driven implosions of Cu-doped targets. We use the imploding shell and its hot core at stagnation to probe the spectral changes of Cu-doped witness layer. These measurements indicate the necessity and viability of modeling dense plasmas with self-consistent methods like density-functional theory, which impact the accuracy of radiation transport simulations used to describe stellar evolution and the design of inertial fusion targets.more » « less
-
We report the results of the second charged-particle transport coefficient code comparison workshop, which was held in Livermore, California on 24–27 July 2023. This workshop gathered theoretical, computational, and experimental scientists to assess the state of computational and experimental techniques for understanding charged-particle transport coefficients relevant to high-energy-density plasma science. Data for electronic and ionic transport coefficients, namely, the direct current electrical conductivity, electron thermal conductivity, ion shear viscosity, and ion thermal conductivity were computed and compared for multiple plasma conditions. Additional comparisons were carried out for electron–ion properties such as the electron–ion equilibration time and alpha particle stopping power. Overall, 39 participants submitted calculated results from 18 independent approaches, spanning methods from parameterized semi-empirical models to time-dependent density functional theory. In the cases studied here, we find significant differences—several orders of magnitude—between approaches, particularly at lower temperatures, and smaller differences—roughly a factor of five—among first-principles models. We investigate the origins of these differences through comparisons of underlying predictions of ionic and electronic structure. The results of this workshop help to identify plasma conditions where computationally inexpensive approaches are accurate, where computationally expensive models are required, and where experimental measurements will have high impact.more » « less
An official website of the United States government
